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This paper presents an inviscid bluff-body wake model which correctly takes into 
account the displacement effect of the far wake by means of an appropriate source- 
sink system located behind the body. The separating streamlines, which in previous 
inviscid wake models have been regarded as the time-averaged shear layers emanating 
from the separation points within a small distance downstream of the body, can be 
interpreted as the displacement surface of the wake throughout the whole region of 
flow behind the body. The solutions for a normal flat plate, a circular cylinder and a 
90" wedge are worked out and compared with experiments, where possible. The 
theoretical pressure distributions agree fairly well with the experimental ones. The 
shape of the separating streamlines obtained from the present theory is physically 
reasonable and compares well with experimental results for a normal plate and a 
90" wedge. 

1. Introduction 
The time-averaged characteristics of the separated flow over a two-dimensional 

bluff body at  sueciently large Reynolds numbers have been treated theoretically by 
means of fre streamline theories in which an inviscid fluid is assumed. The free- 

dimensional incompressible flow past flat plates under the assumption that the 
pressure everywhere in the wake was equal to the pressure outside the wake a t  infinity. 
Some modificationsof the Helmholtz-Kirchhoff model to allow arbitrary base pressures 
were made by Roshko (1954), Wu (1962), Woods (1955) and Parkinson & Janddi 
(1970) among others. A good review of the free-streamline theories and related charac- 
teristics of the wake flows was written by Wu (1972). If the base-pressure coefficient 
and the location of the separation points are assigned on the basis of experimental 
information, these theories give pressure distributions around bluff bodies in good 
agreement with experimental measurements. 

In  these theories the dividing Streamlines emanating from the separation points 
have been assumed to represent the approximate shapes of the separated shear layers 
or the time-averaged boundary of the wake bubbles. Actually, within a short distance 
downstream of the separation points, the dividing streamlines calculated by these 
theories agree fairly well with the time-averaged shear layers obtained experimentally 
for some typical bluff bodies such as a flat plate or a circular cylinder. From the physical 
point of view, the dividing streamlines far downstream of the body should represent 

streamline t r eories were initiated by Helmholtz and Kirchhoff, who considered two- 
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the displacement surface of the wake, which is related to the drag force exerted on 
the body through the momentum principle. This concept was originally put forward 
by Woods (196l).t  However, he did not actually use this criterion to determine the 
velocity distribution on the free streamlines of his models. The reason for this is 
that the rough approximation of the far wake will not have a dominant influence 
on the flow field near the body, although the latter is one of the main objectives of the 
free-streamline theories. 

However, in order to make the free-streamline theories physically more realistic, it 
is desirable that the dividing streamlines far downstream of the body should coincide 
with the displacement surface of the far wake. A flow model of this type will yield a 
first-order approximation to the irrotational flow field outside the wake over the whole 
region from the near wake to the far wake. From the practical point of view, the 
irrotational flow field due to the displacement effect of the wake may be useful for 
assessing the wake blockage effect, which sometimes becomes important in a wind- 
tunnel experiment (Pankhurst & Holder 1952). It is the purpose of this paper to 
present a free-streamline theory which correctly takes into account the displacement 
effect of the far wake by means of a source-sink system located behind the body. The 
theoretical predictions are compared with experiments where possible. 

2. Mathematical formulation of the model 
The wake source model of Parkinson & Jandali (1970) will be used with a few 

modifications required to incorporate the wake displacement effect into the framework 
of the present theory. The present theory is thus an extension of their theory. 

Consider two-dimensional, incompressible, irrotational, steady flow, uniform a t  
infinity, past a body symmetrical with respect to the incident flow, and with sym- 
metrical separation a t  S, and S, in the z plane ( z  = x+iy),  as shown in figure 1. The 
upstream part 8, AS, of the body contour AS, CS, A is mapped conformally from the 
corresponding part of a circle of radius a in the 2 plane (2 = X + i Y )  by the analytic 
function 

where the points S, and S, are critical points at  which the derivative f '(2) has simple 
zeros. The angle of intersection of curves is doubled at S, and S, in the z plane and the 
complete circle in the 2 plane is mapped onto the slit AS, BS, A in the z plane. The 
part of the actual body contour downstream of the separation points, which is rep- 
resented by S, CS, in the z plane, is ignored in the present analysis. The separation 
points in the 2 plane are located a t  

z = f ( Z ) ,  (1)  

Zs, = aeia,  Zs, = ae-ia, (2) 

f ( 2 )  = kilZ+O(Zo) as 121 +a, (3) 

where a is a real constant. Assume that the function f (2) satisfies 

where k, is a constant. For a symmetrical transformation such as that shown in 
figure 1,  k, will become a real constant. 

t The authors are grateful to a referee for pointing out that Woods considered this problem 
in his book published in 196 1. 
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FIGURE 1. Physical and transform planes. 

The basic flow past the circle in the 2 plane is the familiar combination of uniform 
flow in the direction of the X axis and flow from a suitable doublet at  the origin. The 
complex potential W, of the basic flow is given by 

w, = UO(2+U2/Z), (4) 

where U, is the velocity of the incident flow in the 2 plane. Accordingly, the incident- 
flow velocity in the z plane is k, U,, which will hereafter be referred to as U,. 

In  order to have free streamlines emanating from the separation points S,  and S,, 
one adds to this basic flow two sources of strengths Q1 and Q2 located on the real axis 
of the 2 plane a t  (a,  0) and (aefl, o), p being a positive constant, together with their 
image sources and sinks located in the interior of the circle. This arrangement of 
sources is selected solely on the basis of simplicity. It may be remarked that an arrange- 
ment of two sources along the rear side of the circle, i.e. the arc s, BS2 on the 2 plane 
in figure 1,  is another source arrangement which deserves attention from the point 
of view of simplicity. However, a few calculations revealed that the source arrangement 
along the X axis could be applied to a larger number of bluff bodies than that along 
the rear side of the circle. The complex potential of the source-sink system which 
satisfies the boundary condition on the surface of the circle is 

W, = (2n)-'&, log { (2 - ~ ) 2 / 2 }  + (2n)-lQ, log { ( 2 2  - 2 ~ 2  cash /9 + a2)/2). ( 5 )  
20-2 
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The resulting flow can be described by the complex potential 
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w = WU+WQ. (6) 

(7) 

The complex velocity w in the z plane is given by 

w* = u-iv = (dW/dZ) / f ‘ (Z) ,  

where the asterisk means the complex conjugate and u and v are the velocity com- 
ponents in the x and y directions respectively. As mentioned previously, the points 
S, and S, are the critical points of the transformation given by ( l ) ,  wheref‘(2) has 
simple zeros. Therefore, in order that the velocities at the points S, and S2 will be 
finite, one must have 

dW/dZ = 0 a t  Z = Zsl and Zs,. (8) 

Because of the doubling of the angles at the critical points, the stagnation streamlines 
leaving S, and S, in the Z plane become the tangential separation streamlines at  
8, and Sz in the z plane. Since the flow is symmetrical with respect to the real axes 
of the complex planes, the conditions at either of the points S, and S, will suffice 
to determine the parameters of the flow. In  the following analysis the conditions a t  the 
point S, will be considered. From (4)-(6) one obtains 

d W / d Z  = Uo{ 1 - (d /Z2 ) )  + (2n)-lQl(Z + u)/{Z(Z - u) }  

+ ( 2n)-’Q,(Z2 - u’)/{Z(Z’ - 2 ~ 2  cosh/3 + a2)>. (9) 

Accordingly, substitution of (9) into (8) yields 

Q,/(cosa- 1) +Qz/(cosa- coshp) = -4nuU,, (10) 

which is one of the conditions to be satisfied by the three parameters Q,, Q2 and /3. 
The velocity at the separation point can be calculated from 

= [(d2W/d~’)/f”(Z)Is,, (11) 

where the right-hand side is evaluated a t  the point S, in the Z plane. Substituting (9) 
into (1 1) and taking into account the relation (lo), one obtains 

w& = I e-zia sin2 a/{2nu”f”(Zs,)}, (12Q) 

where I = Q,/(cosa- l )2+Q2/(~osa-cosh~)2 .  (12b) 

qsl = rsin2~/{2nu2n)f”(Z~~)J>, (13) 

The magnitude of the velocity a t  the separation point is thus given by 

in which n = 2 1 if I 5  0. In  the same manner as in the free-streamline theories 
mentioned above, the flow is assumed to separate a t  the empirical value of the base- 
pressure coefficient, which is defined by 

‘pb = ( p b - p m ) / ( & P u t ) ,  (14) 

where pb is the base pressure and p m  is the pressure infinitely far upstream. The flow 
inside the separation streamline is ignored and the pressure coefficient over the down- 
stream face s,cS, in the z plane is assumed constant and equal to cpb. Writing 
qsl = kU,, where 

(15) k = (1 -C,,)t, 
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one obtains from (1 3) 

Q,/(cos a - 1 )2 + Q,/( cos a - cosh jQ2 = 2na2n If”(Zsl) I kU,/sin2 a. (16) 

This is the second condition imposed on the three parameters. 
One now incorporates the displacement effect of the far wake in the present flow 

model. It is well known that the presence of the far wake is associated with a source- 
like contribution to the irrotational flow field outside the wake, the strength of the 
effective source being 

where D is the drag force exerted on the body (Batchelor 1967, 35.12). The flow at 
large distances from the body is evidently a superposition of a uniform stream and the 
flow due to a source whose strength is given by (17). Accordingly, the total strength 
of the sources outside the circle in the 2 plane must satisfy the condition 

(17) D/(P urn ) 9 

pUm(Q,+ Q 2 )  = D. (18) 

cD = D/(gpu5z) ,  (19) 

Q1+ Qz = &’, u m  1. (20) 

If the drag coefficient CD is defined by 

as usual, where I is a representative length of the body, (18) can also be written as 

This is the third condition imposed on the source arrangement. It should be mentioned 
that Woods (1961, Q 11 .1 )  gave a criterion equivalent to (20) but did not in fact use 
that criterion in determining the velocity distribution along the free streamlines of 
his wake models. To the authors) knowledge, this is the first time that the relation 
(20) has been introduced into the actual framework of an inviscid wake model. 
Equations (lo),  (16) and (20) are the simultaneous equations from which the three 
parameters Q1, Q2 and 

Since (10) and (16) allow Q, and Q2 to be obtained in terms of /?, substitution of the 
resulting expressions for Q, and Q2 into (20) yields a transcendental equation for B, 
which includes the drag coefficient C,  as an unknown parameter. Accordingly, a value 
of C, must be assumed to begin with. Then the resulting values of p, Q1 and Q2 will 
yield the pressure distribution along the wetted surface of the body, which can be 
integrated to obtain the drag coefficient. Unless the calculated drag coefficient is equal 
to the assumed value to the required accuracy, the same process must be repeated 
until convergence is attained. For a few typical bluff bodies which will be described 
later, in 3 4, sufficient convergence was obtained after two or three iterations. 

Partly from a few results of calculations and partly from physical reasoning, it is 
conjectured that Q1 and Qz must be positive and negative respectively in order for the 
present theory to yield a reasonable flow pattern around the body. In view of (10) 
and (16), this condition reduces to 

which is found to hold with a sufficient margin for some typical two-dimensional 
bluff bodies such as a normal flat plate, a circular cylinder and an elliptical cylinder. 

The complex velocity wf on the wetted surface of the body can be obtained by 
substituting (9) into (7) and putting 2 = aexp(i0) (a < 0 d n) in the resulting 
equation, the final form being 

w; = {i e-io sin O/f’(a eie)} (2U0 + (2na)-l {Q,/(cos 0 - 1) + Q,/(cos 0 - CoshP)}). ( 2 2 )  

are to be determined. 

If”(zsl)I ’ 2(1+ cosa) / (~kkl ) ,  (21) 
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The pressure coefficient on the wetted surface of the body is thus given by 
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c, = l-wrwr*/u:. (23 )  

3. Conditions at separation points 
In the theory developed in 2, the separation points, which are represented by an 

angle a in the Z plane, and the base-pressure coefficient C,, are specified empirically, 
and while the theory gives separating streamlines which are tangential to the body 
surface at  separation, it does not specify their curvature there. Knowledge of the 
curvature is important because of the possibility of physically inadmissible solutions 
in which the predicted separating streamlines intersect the body surface downstream 
of separation. 

As demonstrated by Woods (1961,s 11.6, information on the streamline curvature 
just after separation can be obtained by examining aC,/as (where s is the distance 
measured from the forward stagnation point along the body surface) on the wetted 
surface of the body near the separation points. Since C, and s are both functions of 
0, one obtains 

From the correspondence between the x and Z planes illustrated in figure 1,  it is clear 
that 

= ~ ~ C , / ~ ~ ~ s l / ~ ~ ~ / ~ ~ ) s l .  (24 )  

asla0 < 0 on AS,,  asla@ = 0 at S,. (25% b )  

In order to obtain (aC,/as)sl, one examines the behaviour of aC,/as near 8,. If 0 
is written as 0 = a + E  (0 < E < a), w? can be expanded in the form 

W; = - 2 P 1 d , + ~  2P1 d 2 + d  2 - < d 2  + 0 ( e 2 ) ,  (26) 
C1 Y i ( 1) 

where 

PI = u, COS 01 - (4nU)-’&,/(COS 01 - 1) 

+ (4nu)-lQ2(1 - cosacoshp)/(cosa- coshp)2, (27a) 

P2 = U ,  sin a + (4na)-l sin a{Q,/( cos a - 1 )2 

- Q2(2 - cosh2P- cosa coshp)/(cosa - c ~ s h p ) ~ } ,  (27b)  

c1 = i eiaaf”(ZB,), c2 = aeiaf”(Zsl)  + u2 e2iaf”(Zsl), (27 c )  

(27 d )  d - i e - i a  d - e-ia 
1 -  , 2 -  * 

In view of the relations d,d:  +d:d2  = 0 and d,d: = 1, the square wjw; of the 
magnitude of the velocity becomes 

ww*-- f f - c ; : ( 2 P l + € ( < e + $ )  -2P, ] )+O(a2) .  

Accordingly, one obtain,s from (23 )  
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From (24), (25) and (28), it follows that 

+ co for P,(mP, - Pz) > 0, 
(8Cp/8s),, = finite for e(mPl-P2)  = 0, 1 - co for P,(mP, - P2) < 0. 

If (aCp/as),l = -co, it can be shown (Woods 1961, 9 11.1) that the curvature of the 
separation streamline at  S, is infinite and convex when viewed from outside the wake, 
so that the streamline would intersect the cylinder. Therefore any solution with 
Pl(mPl- P,) < 0 is physically inadmissible. On the other hand, if Pl(mPl- Pz) > 0 
there is an infinite adverse pressure gradient at S,, which is not possible because 
separation would have already taken place in view of the characteristics of the 
boundary layer along the body surface. Thus, in order to obtain a finite pressure 
gradient and streamline curvature a t  the separation points, the following equation 

P,(mP,- P.) = 0. must be satisfied: 

This is the ‘smooth-separation’ condition and it enables a relation between the base 
pressure and the position of the separation point to be determined. Since P, cannot 
be zero in view of the relation 

Pl = 4!l&nalf”(~sl)19 
the above equation yields . 

Substituting ( 2 7 a ) b )  into (31)) one obtains 
mP,- P2 = 0. 

m sin a m sin a 2 - 3 cosa coshb i- cos2 a 
cosa- 1)2+(cosa- 112 +- (cos a - cosh b)3 ) +“ ((cos a - cosh/3)2 

a- 

(32) 
In  this case the constants Q1, Q2 and must be determined through the use of (lo), 
(20) and (32)) while (16) yields the value of k. 

As will be shown in $ 4.2, the angle of separation thus obtained for a circular cylinder 
is much less than the value obtained if k is determined empirically, so that the 
theoretical pressure distribution is inaccurate near the actual separation point. This 
result is not a matter of surprise in view of the fact that the smooth-separation 
condition does not take into account the actual near-wake dynamics, which are of 
vital importance in the determination of the base pressure and the separation point. 
Accordingly, from the practical point of view, the requirement of finite curvature 
should be abandoned; both the base pressure and the separation point are chosen 
empirically as discussed in $2. From a few calculations it is found that (aCp/as),l 
becomes positively infinite for a number of smooth cylinders without salient edges 
so long as the separation point occurs sufficiently far downstream of the forward 
stagnation point. 

Some examples are now worked out and compared with other theoretical and 
experimental results. 

4. Applications 

The mapping function f(2) is given by 
4.1. Normal flat plate 

f(2) = 2 - a2/Z, (33) 
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FIQURE 2. Pressure distribution on a normal flat plate. ---, present theory, CB = 2.11; ---, 
theory of Parkinson & Jandali (1970), CD = 2.13; 0, experiment of Fage & Johansen (1927), 
CD = 2.13. y is distance measured from forward stagnation point and 2h is height of plate. 

which yields a normal flat plate of height 2h = 4a in the physical plane. Since k, = 1, 
a = in, Zs, = ai andf”(ZB1) = - 2i/a in this case, (lo), (16) and (20) become 

Q1 + Q2/COshB = 4naU0, Q1 + Q,/cosh2B = 4nakU0, 

Q1+Qz=2CDUoa, 

in which n = 1 has been employed. From (22), the velocity on the front surface of the 
plate becomes * 

[ w; = i t an@ (34) 

Figure 2 shows the pressure distribution on the front surface of the plate obtained 
from the present theory together with the experimental result of Fage & Johansen 
(1927) and another theoretical curve given by Parkinson &, Jandali (1970). Although 
the present theory predicts a slightly lower pressure on the front surface of the plate, 
the difference between the two theoretical curves is very small and their agreement 
with the experiment is good. In  figure 3 the theoretical flow pattern around the plate 
is compared with the experimental result of Arie & Rouse (1956). Since the separation 
streamline obtained from the present theory should be interpreted as the displace- 
ment surface of the wake, the experimental displacement surface which is obtained 
from the flow pattern given by Arie & Rouse is also included in figure 3. From this 
result the present theory may be found to provide a fairly good first-order approxima- 
tion to the displacement surface of the wake. Recently Bradbury (1976) measured the 
wake bubble behind a normal flat plate by means of a pulsed hot wire. His wake- 
bubble shape is almost identical to that of Arie & Rouse except that the stagnation 
point of hiswake bubble appears at about x/h = 4whereas theirs is located at x/h = 4.4. 
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FIGURE 3. Flow patterns around a normal flat plate. -, present theory; ---, theory of Parkinson 
& Jandali (1970); - - --, experimental displacement surface (Arie & Rouse 1956); ---, experi- 
mental wake-bubble boundary (Arie & Rouse 1956). Horizontal lines parallel to z axis show 
asymptotic downstream height of separation streamlines. 

Accordingly the displacement surface obtained from Bradbury’s measurement will 
approach its asymptote more rapidly than will the displacement surface of Arie & 
Rouse, thus yielding better agreement between the theory and experiment. In passing 
it should be mentioned that the smooth-separation condition cannot be applied in 
this case because of the infinite curvature at  the edges of the plate. 

4.2. Circular cylinder 

If the radius of the circular cylinder represented by a circular arc S, AS2 in the z plane 
is chosen as unity, the mapping function is given by 

f(2) = 2 - a2 - a2( 1 - a2)/(2 - a2), (35) 

a = t(n-Ps), a = cosa. (36% b )  

in which a is a constant related to the separation angle ~3, and a by 

From (35) one easily obtains 

k, = 1, f”(Zsl) = -2i/(asina), 

f”’(Zs,) = 6/{a2( 1 - a2)}, m = 3 cot a. 

Through the use of these quantities, the three parameters Q,, Qz andp can be calculated 
from (lo),  (16) and (20) or from (lo), (20) and (32) in the case of the smooth-separation 
condition. 

Figures 4-7 show comparisons of results of the present theory with theoretical 
results of Parkinson & Jandali (1970) and with experimental results of Roshko (1954, 
1961) and Bearman (1968). Figures 4 and 5 show the surface pressure distributions 
in the subcritical, critical and transcritical Reynolds number ranges respectively. For 
the same separation angles and base-pressure coefficients, the present theory yields 
higher suction peaks than that of Parkinson & Jandali. Thus the overall ageement 
between the present theory and the experiments is less satisfactory. However, if 
somewhat smaller separation angles are chosen, the present theory gives similarly 
good agreement with the experimental measurements. 

Figure 4 also shows the theoretical pressure distributions obtained by applying the 
smooth-separation condition (32). For the experimental base-pressure coefficient 
C,, = - 0.96 ( k  = 1*40), the present theory predicts the separation point to be at 
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8, 
FIGURE 4. Pressure distribution on a circular cylinder (subcritical flow regime). -, present 
theory, Bs = 80°, CD = 0-97; , present theory, Bs = 75-0°, CD = 1.01; - - - - -, present theory, 
smooth-separation condition, Bs = 60.8", CD = 1-06; ---, theory of Parkinson & Jandali (1970), 
Bs = SO", C D  = 1.09; 0, experiment of Roshko (1954), Reynolds number = 1.54 x lo4, CD = 1.07. 
0, is angle measured from forward stagnation point. 

PS = 60-8', while for the experimental laminar separation angle Ps = 80°, it  yields a 
base-pressure coefficient of C,, = - 1-72. Accordingly, as may be seen in figure 4, the 
corresponding theoretical pressure distributions are inaccurate near the actual 
separation point. For the critical and transcritical flow regimes, values of the para- 
meters Q1, Qz and which satisfy the smooth-separation condition could not be 
obtained. 

Figures 6 and 7 give the separation-streamline shapes calculated from the present 
theory together with the theoretical results of Parkinson & Jandali (1970). Although 
the two theoretical separation streamlines lie close together in the neighbourhood of 
the separation point, the asymptotic downstream spacing given by the present theory 
is appreciably smaller than that given by the theory of Parkinson & Jandali. This is 
the main consequence of condition (20). Figure 6 also includes an experimental flow 
pattern around a circular cylinder which was constructed from a flow-visualization 
photograph taken by Igarashi (1975) in an air tunnel with smoke, the Reynolds number 
being 3-38 x lo4. Since the exposure time is 1.0s and the velocity of the approaching 
stream is 6.0 m/s, the flow pattern corresponde to a time-averaged flow pattern around 
the cylinder. In  fact the vortex-shedding frequency is about 35 Hz in this experiment. 
Although the exact displacement surface of the wake is not clear in this experimental 
flow pattern, it may be conjectured that the predicted approach of the displacement 
surface to its asymptote is more rapid than the experimental one. Detailed measure- 
ment ofthe mean velocity distribution in the near wake is required to obtain the exact 
shape of the displacement surface, and thus the assessment of the present theory in 
this respect may still be incomplete owing to the lack of any such experimental 
information which is reliable. 
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FIGURE 5. Pressure distribution on a circular cylinder. (a) Transcritical flow regime: -, present 
theory, Ps = 104", C D  = 0-70; , present theory, /3s = loo", C D  = 0.71; --- , theory of 
Parkinson & Jandali (197O), /3s = 104O, C D  = 0.79; 0, experiment of Roshko (1961), Reynolds 
number = 8.4 x lo6, Co = 0.70. (b)  Critical flow regime: __ , present theory, PS = 117.5", 
CD = 0.26; ---, present theory, ps = 1 to", C D  = 0.24; ---, theory of Parkinson & Jandali 
(1970),/3s = 117.5",C~ = 0.34; O,experimentofRearman(1968),Reynoldsnumber = 2 . 1 3 ~  lo6, 
CD = 0.31. 0, is angle measured from forward stagnation point. 

4.3. 90" wedge 

Through the use of the Schwartz-Christoffel transformation, the mapping function 
can be written in the form (Parkinson & Jandali 1970) 

dz/dg =f'([) = Kc([+ I)-i((y- I)-$, 

where (y = t (2 + 2-l) and K is a scale factor to be determined. lntegration of this 

equation yields 2t3 
z = K  - 

( t 4 -  1 (37) 
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FIQURE 6. Flow pattern around a circular cylinder (subcritical flow regime). -, present theory, 
Ps = 80"; ---, theory of Parkinson & Jandali (1970), /?s = 80". Horizontal lines parallel to x axis 
show asymptotic height of separation streamlines. r is radius of circular cylinder. Dotted areas 
show regions contaminated by smoke particles during flow visualization. 
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FIQURE 7. Flow pattern around a circular cylinder. (a) Critical flow regime: -, present theory, 
/?s = 104"; ---, theory of Parkinson & Jandali (1970), Ps = 104". (a) Transcritical flow regime: 
-, present theory, /?s = 120"; ---, theory of Parkinson & Jandali (1970), = 120". r is radius 
of circular cylinder. 

in which 

The transformation (37) maps the upper half of the 5 plane onto the upper half of 
the z plane, in which the wedge is represented by a slit inclined at 45" to the x axis. 
The radius of the circle in the 2 plane has been taken as unity. The separation points 
in the 2 plane are located at Z = i and thus a = in. If the height of the wedge is 
denoted by 2h, the scale factor K is determined as 

t = {([+ 1)/(5- 1 ) ) f  = {(Z+ l) /(Z- 1))k 

K = 2h/{logcot Q.n + 42 - 4.). 
Since (37) becomes Z -  iKZ+ ... as Z+CQ, 

one obtains from (3) k, = 2/K. (391 

Furthermore, (38) yields If"(ZSl)l = K. Through the use of these quantities, the 
parameters Q1, QB and /3 can be determined from (lo),  (16) and (20). 

Figure 8 compares the theoretical surface pressure distributions oomputed by the 
present method and that of Parkinson & Jandali (1970) with an experimental dis- 
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FIGURE 8. Pressure distribution on a 90" wedge. -, present theory, Co = 1.74; ---, theory 
of Parkinson & Jandali (1970), CD = 1.85; 0, experimental data taken from Parkinson & Jandali 
(1970), CD = 1.78. y is distance measured from forward stagnation point along wedge surface 
and 2h is height of wedge. 

-2 - 1  0 1 2 3 4 5 6 7 
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FIQTJRE 9. Flow pattern'around a 90' wedge. -, present theory. Horizontal line parallel t o  
z axis is asymptotic height of separation streamline. Dotted areas show regions contaminated by 
hydrogen bubbles during flow visualization, 

tribution which is given in their paper. Although both theoretical curves agree quite 
closely with the experimental values, the present theory may be seen to yield some- 
what better agreement. The predicted separation streamline is shown in figure 9 
together with an experimental flow pattern taken from a flow-visualization photo- 
graph for a Reynolds number of 2100, the exposure time being 10s. The Reynolds 
number in this case is defined in terms of the base height of the cylinder (2h = 50 mm) 
and the approach velocity (U, = 5*0cm/s). The experiment was performed in a 
recirculating water channel, the flow around the wedge being visualized with hydrogen 
bubbles. It seems that the theoretical separation streamline is a fairly good approxi- 
mation to the displacement surface of the wake, although a more detailed comparison 
between the theory and experiment should be made on the basis of reliable velocity 
measurements in the near wake of the wedge. 
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5. Concluding remarks 
A n  inviscid bluff-body wake model which appropriately takes into account the 

displacement effect of the far wake has been developed. The present theory, which 
incorporates some of the ideas underlying the wake source model of Parkinson & 
Jandali (1970), yields a reasonably good description of the irrotational flow field 
outside the wake. The separation streamlines obtained from the present theory could 
be interpreted as the displacement surface of the wake throughout the region of flow 
from the near wake to the far wake. It should be pointed out that, as far as the authors 
are aware, almost all of the previous inviscid wake models failed to give definite 
physical meaning to the separation streamlines far downstream of the body to the 
same extent as the present theory, although the separation streamlines predicted 
by these theories agreed fairly well with the time-averaged shear layers within a small 
distance downstream of the body. 

The solutions which were worked out for a normal flat plate, a circular cylinder 
and a 90’ wedge showed that the surface pressure distributiops obtained by the present 
theory gave fairly good agreement with experimental measurements. Furthermore, 
the theoretical separation streamlines are not inconsistent with displacement surfaces 
obtained from flow-visualization results. 

Bearman & Fackrell (1975) presented a generalization of Parkinson & Jandali’s 
wake source model which extends its applicability to arbitrary two-dimensional and 
axisymmetric bluff bodies by representing the wetted surface by a distribution of diS- 
crete point vortices. By applying the method of Bearman & Fackrell, it may be possible 
to extend the present theory to body shapesforwhich suitable transformation functions 
are not known or difficult to obtain. However this will be left for another study. 

The authors express their sincere thanks to Dr T. Igarashi of the Japan Defense 
Academy for supplying them with the photograph of flow around a circular cylinder 
from which figure 6 of the present paper was constructed. Figure 9 was prepared 
from a photograph taken by M. Furukawa, a graduate student a t  the authors’ 
laboratory of fluid mechanics, Hokkaido University. A referee is also acknowledged 
for comments which have led to improvement of the paper. 
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